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Abstract

Discontinuous finite element methods for the SN equations on 3-D unstruc-

tured tetrahedral and hexahedral meshes are presented. Solution techniques in-

cluding source iteration and diffusion-synthetic acceleration are described. Nu-

merical results are presented which demonstrate the accuracy and efficiency of

these methods.
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I. Introduction

The purpose of this paper is to present methods for solving the SN equations

on 3-D unstructured tetrahedral and hexahedral meshes using the discontinuous

finite-element method (DFEM) for the spatial discretization. The majority of

DFEMs developed within the reactor physics community have been rectangular-

mesh methods. Notable exceptions are the methods used in the TRIPLET1, TRIDENT2,

and ZEPHYR3 SN codes. TRIPLET and TRIDENT are 2-D triangular-mesh

codes. Their meshes are actually semi-structured rather than fully unstructured

because the triangles are located on bands. The ZEPHYR code has a fully un-

structured mesh consisting of arbitrary combinations of quadrilaterals and trian-

gles. There are two significant complications encountered when applying DFEMs

to the SN equations on 2-D unstructured meshes that are not encountered when

applying them on 2-D rectangular meshes:

� For quadralaterals, the finite-element matrix elements must be evaluated by

quadrature because they cannot be analytically integrated.

� The lower-triangular ordering of the angular flux unknowns required to

solve the source iteration equations via the back-substitution or sweeping

technique is mesh-dependent. Thus this ordering must be explicitly deter-
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mined for each direction via a computational algorithm. On rectangular

meshes, this ordering depends upon direction, but it is mesh-independent

and trivial to recognize. It has been observed that a lower-triangular or-

dering exists on all 2-D unstructured meshes as long as the mesh is non-

re-entrant as a whole, and each element (spatial cell) within the mesh is

non-re-entrant.

Further complications are encountered when DFEMS are applied on 3-D un-

structured meshes:

� Because the faces of general hexahedra can be non-planar, a given direc-

tion can be incident on one part of a element face and exiting on the other

part. This causes the finite-element definition of the angular flux to change

on the interior of element faces, whereas such changes never occur with

flat faces. These face-interior changes require separate matrix-element in-

tegrations within the incident and exiting regions of the face because each

region has a different basis function representation for the flux. Since stan-

dard finite-element quadratures are intended to integrate a single polyno-

mial flux representation over a whole face, they can be very inaccurate for

performing these double-representation integrations. Furthermore, having
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directions that are both incident and exiting on the same face make a lower-

triangular ordering impossible because the two elements sharing that face

become mutually-dependent.

� We initially assumed that if a 3-D unstructured mesh were non-re-entrant as

a whole, and if all of the elements in the mesh were non-re-entrant, a lower-

triangular ordering of the angular flux unknowns would exist. However,

we have found that this is not necessarily true. It is possible for “rings” of

mutual dependency to form on 3-D unstructured meshes even if the previ-

ously described mesh criteria are met. When this occurs, a lower-triangular

ordering of the angular flux unknowns does not exist.

Thus, if one is to develop a DFEM SN method for 3-D unstructured meshes,

one must deal with the complications described above. Our strategy for dealing

with them relies on two facts:

� These complications will rarely occur on well-shaped, i.e. not highly skewed,

meshes.

� Directions that are both incident and exiting on a face are essentially parallel

to the face. Fluxes exactly parallel to to a flat face yield a zero solution

within the element. Thus, we expect that such approximations made for
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directions nearly parallel to the faces will only weakly affect the overall

solution.

The full details are given later, but a high-level description of our strategy can

be given as follows:

We deal with a direction that is both incident and exiting on the same face by

defining the direction to be either incident or exiting over the whole face via a sin-

gle average face normal. The finite-element flux representation is then uniquely

defined over the entire face. Furthermore, this solves the local problem of mutual

coupling between the elements that share the face, but global dependency rings

can still form. We use graph theory to identify mutually-dependent rings of ele-

ments in the sweep ordering process. The mutual dependence is effectively bro-

ken by assuming that the incoming fluxes for one element in the ring are known.

This allows the ordering process to continue even though the resulting system of

source iteration equations is not lower triangular. Because the equations are not

lower triangular, an exact solution is not obtained after each sweep is performed.

The remainder of this paper is organized as follows: in Section II, we describe

the DFEM spatial differencing of the SN equations on 3-D unstructured meshes;

in Section III, we describe the solution method for solving these DFEM SN equa-

tions; in Section IV, we present some numerical results; and in Section V we end
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with some conclusions.

II. DFEM Spatial Differencing

We first consider the multigroup SN equations for domain, V , and boundary,

�V , and an isotropic fixed source:


m � r	m;g(r) + �t;g(r)	m;g(r) = Sg;m(r) +Qg;m(r) ; (1)

Sm;g(r) =

GX
g=1

LX
l=1

(2l + 1)�ls;g0!g(r)

lX
n=�l

Yl;n(
m)�
n
l (r) ; (2)

	m(r) = Fm;g(r); n � 
m < 0 : (3)

Here m and g are the angle and group indices, 	 is the discrete-ordinate angular

flux, F is the incident angular flux, �t is the macroscopic total cross section, �s

is the macroscopic scattering cross section, S is the scattering source represented

as an expansion of spherical harmonics (Yl;n), Q is the fixed source, and n is the

outward directed unit normal vector of �V . We need only consider isotropic scat-

tering in the development of the DFEM equations, but this is not a limitation. Ex-

panding the r operator using the standard summation convention (i.e. a repeated

index in the same multiplicative term implies a summation) and suppressing the
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m and g subscripts, Eq.(1) for a single energy group in 3D Cartesian geometry

becomes


i

@

@ri
	(r) + �t(r)	(r) = �s(r)�(r) +Q(r) ; (4)

where the individual components of 
 have been written as 
i and the individual

components of r have been written as @=@ri, where r1 = x, r2 = y and r3 = z.

The indices run from one to the number of spatial dimensions. Unless otherwise

noted, this summation convention will be used in all the equations that follow.

A. Discontinuous Finite Element Formulation

We begin the development by assuming that the problem domain has been

divided into a unstructured spatial grid of volume elements (spatial cells). The

elements shapes are unspecified for now, but we do require that the vertices be

connected by straight lines. The material properties within each element are as-

sumed to be constant. The DFEM derivation begins by considering element k,

with volume Vk and surface �Vk. We define approximate angular and scalar flux

functions within element k in terms of a linearly independent set of basis func-

tions, [
p(r); 1 � p � Pk] , where p is the node index and Pk is the number of
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nodes per element. These approximate functions take the following form:

	(r) �=  (r) = �T (r) ; (5)

and

�(r) �= �(r) = �T (r)� ; (6)

where

� =

�

1(r); � � � ; 
Pk (r)

�T
; (7)

 =

�
 1; � � � ;  Pk

�T
; (8)

and

� =

�
�1; � � � ; �Pk

�T
: (9)

The basis functions are chosen to give appropriate nodal displacements when the

coordinates of corresponding nodes, p, are inserted into Eqs.(5 ) and (6). That

is, 
p(r) = 1 at r = (xp; yp; zp) and zero at the other nodes. Here  and � are

column vectors of nodal angular and scalar fluxes, respectively. Next, we apply the

Galerkin method, which consists of inserting Eqs. (5)-(6) into Eq. (4), multiplying

by
�!
� and integrating over Vk. This operation guarantees the orthogonality of the
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residuals to the space spanned by the spatial basis functions, thus minimizing, in

a certain sense, the error introduced by the approximation introduced in Eq. (5).

Carrying out this operation and using the divergence theorem, we obtain:Z
�Vk


ini� 
s(r)d�V �

Z
Vk


i

@�

@ri
�T

 dV

+

Z
Vk

�
�
�t�

T
 � �s�

T
�� q(r)

	
dV = 0 : (10)

Here, ni(r) is the i-th component of the outward directed unit normal vector to

�V and  s(r) is the angular flux on the element boundary. For each element,

�Vk =

NfacesX
l=1

�Vk;l ; (11)

where l represents the face number andNfaces is the total number of faces enclos-

ing element k, for example, Nfaces = 4 for tetrahedral elements and Nfaces = 6

for hexahedral elements To complete the derivation we need to define the element

boundary angular fluxes. Here we assign angular flux functions on the upstream

side of the boundary as follows:

 
s(r) = �T (r) s;l

; (12)

where for the l -th face,

 
s;l =

 ;
in
av;l
i > 0

 
inc

; 
in
av;l
i < 0

: (13)
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Here,  inc is the corresponding column vector of nodal angular flux values of the

element that shares the l-th face of element k and nav;l is the average unit normal

vector of the l-th face, defined by:

n
av;l =

A
l

k A
l
k

(14)

where,

A
l =

Z
�Vk

n
l
d�V : (15)

Equations (13) requires some explanation. For elements with planar faces (tetra-

hedra) these definitions are consistent with the finite-element formalism. For non-

planar faces, the unit normal vector to the face is not constant across the face and

a given direction can be both incident and exiting to the face. This results in a

mutual dependency between the elements that share the face and thereby makes

a lower triangular ordering impossible. If the unit normal vector to a face does

not change sign then the use of an average normal for defining incident and exit-

ing fluxes remains fully consistent with the finite-element formalism. If the unit

normal vector to a face does change sign we define each given direction to either

be incident or exiting across the entire face based upon the average outward di-

rected unit normal vector to the face. This is not consistent with the finite-element

formalism and therefore represents an additional approximation.
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The DFEM equations for each element are then given by:

NfacesX
l=1


iU
l

i
 
s;l +

�
�
iK i

+ �tM

�
 = �sM �+q ; (16)

where,

U
l

i
=

Z
�Vk;l

ni��T
d�V ; (17)

K
i
=

Z
Vk

@�

@ri
�T

dV ; (18)

M=

Z
Vk

��T
dV ; (19)

q=

Z
Vk

�q(r)dV : (20)

B. Spatial Derivatives and Integrals

In general the volume elements will be non-orthogonal and it becomes nec-

essary to transform from global coordinates, r= (x; y; z), with difficult limits of

integration, to local coordinates, er = (ex; ey; ez, with simple limits of integration.

The local coordinate system is defined such that the physical cell takes on a sim-

ple shape and size. For example, every hexahedral is a unit cube in the local
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coordinate system. The most convenient method of establishing the coordinate

transformations is to use the local basis functions to represent the variation of the

unknown coordinate. If, for instance, we write for each element:

x(er) =�T (er)
26666664
x1

...

xPk

37777775 = �T (er)x ; (21)

y(er) =�T (er)
26666664
y1

...

yPk

37777775 = �T (er)y ; (22)

z(er) =�T (er)
26666664
z1

...

zPk

37777775 = �T (er)z ; (23)

where, y, z are column vectors of the nodal coordinates, immediately a relation-

ship of the required form is available. It is necessary to have some means of

expressing the global spatial derivatives in terms of local derivatives. This is done

in the literature4 and only the final result is given. Thus,

dV = dxdydz = detJ (er)dexdeydez = detJ (er)deV (24)
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@

@ri

= J
�1
i;j (er) @

@erj ; (25)

where J is the Jacobian matrix defined by:

J (er) =
26666664

�
@�T

@ex
x

� �
@�T

@ex
y

� �
@�T

@ex
z

�
�
@�T

@ey
x

� �
@�T

@ey
y

� �
@�T

@ey
z

�
�
@�T

@ez
x

� �
@�T

@ez
y

� �
@�T

@ez
z

�

37777775 : (26)

For the boundaries we have:

d�V = jJs(ers)j dexsdeys = jJs(ers)j d�eV ; (27)

where the exs and eys coordinates are assumed to be the local coordinates for the

element face, jJsj is the magnitude of the surface Jacobian given by:

Js(ers) =
26666664

�
@�T

@exs
x

�
�
@�T

@exs
y

�
�
@�T

@exs
z

�

37777775 �
26666664

�
@�T

@eys
x

�
�
@�T

@eys
y

�
�
@�T

@eys
z

�

37777775 : (28)

Equations (17) - (20) become:

U
l

i
=

Z
�eVk;l

ni��T
jJs(ers)jl d�eV ; (29)

K
i
=

Z
eVk

J
�1
i;j (er)@�

@erj�T detJ (er)deV ; (30)
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M=

Z
eVk

��T detJ (er)deV ; (31)

q=

Z
eVk

�q(er) detJ (er)deV : (32)

Because the limits of integration are fixed, we can perform these integrals with

sufficient accuracy using Gauss quadrature.

III. Solution Technique

The DFEM equations are solved using source iteration (SI) in conjunction with

diffusion-synthetic acceleration (DSA), as described by the following equations:


 � r	(`+1=2) + �t	
(`+1=2) = �s�

(`) + Q; (33)

�r �
1

3�t
r��(`+1) + �a��

(`+1) = �s

�
�(`+1=2)

� �(`+1)
�
; (34)

�(`+1) = �(`+1=2) + ��(`+1)
: (35)

Here, ` is the iteration index. Equation (33) is the sweep equation and Eq. (34) is

the DSA equation.
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A. Source Iteration and Transport Sweeps

The discretization of Eq.(33) in angle and space yields, for each angle in the

discrete set, a system of equations whose associated matrix can be written in block

lower triangular form (the sweep matrix), where each block is usually associated

with the unknowns in a single spatial element. The dependencies between the

elements for any angle can also be expressed in terms of a directed graph. If this

sweep graph is acyclic, then each of the blocks in the matrix is associated with a

single element; if the graph is cyclic then at least one of the blocks is associated

with more than one element. In the latter case, the source iteration equations can

no longer be exactly solved using a sweep.

Each system of DFEM SN equations is solved by the method of sweeping.

The spatial elements are placed into an ordered list in which the order results in a

block lower triangular matrix. Each block is solved in succession. Physically this

solution order resembles a wave front propagating through the mesh roughly in

the direction of the associated angle. In the case of a cyclic sweep graph a depth

first search algorithm5 is used to determine the identities of the elements in each

cycle (associated with a large block in the matrix). These cycles are “broken” by

approximating one or more unknown incoming face fluxes with the values from

the previous source iteration; this approximation yields a modified sweep matrix
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in which each block refers to the unknowns of only one element.

Although most of the smooth meshes we have generated and examined have

yielded only directed acyclic sweep graphs, we have observed cyclic graphs in

both tetrahedral and hexahedral meshes. The use of previous iterate information

has not noticeably degraded the performance or stability of the SI or DSA iter-

ations. Presently, our algorithm for breaking the cycles has not been optimized,

thus, if many cycles are present, a dramatic increase in run time can be expected.

B. Acceleration Equations

Specific details of DSA are widely available in the literature6;7. One very

important and well known fact about DSA is that the discretization of Eq.(34)

must be consistent (or nearly consistent) with the discretization of Eq.(33). The

four-step method7 is one way to obtain completely consistent differencing of

Eq.(34) for all differencing schemes, but for advanced differencing schemes such

as DFEMs in multidimensions, the resulting P1 system of equations cannot be

collapsed into a single discretized diffusion equation. Adams and Martin have

proposed a “modified four-step” DSA method8 for DFEMs, where the diffusion

differencing is obtained by applying a DFEM method to the diffusion equation.

Their method leads to a single discretized diffusion equation, which is both non-
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standard and non-symmetric . Both the four-step and modified four-step meth-

ods are stable and effective for DFEMs, but the resulting equations are difficult to

solve in an efficient manner on unstructured meshes. Wareing, Larsen and Adams9

have developed yet another approach for obtaining nearly consistent DSA equa-

tions for DFEMs. This approach leads to a discretized diffusion equation that can

be solved very efficiently, however, although the method is always stable, the ef-

fectiveness is significantly degraded for skewed and high aspect ratio elements.

We use an adaptation of Wareing, Larsen and Adams method.

To derive the discretization of Eq.(34), using an adaptation of the Wareing,

Larsen and Adams method, we begin by defining approximate scalar flux correc-

tion functions within element k in terms of the same linearly independent set of

basis functions that we used with the discrete-ordinate equations:

��(r) �= ��(r) = �T (r)�� : (36)

If we multiply Eq.(34) by � , integrate over the volume V, and insert Eq.(36) into

the resulting equations, we obtain:

�

NfacesX
l=1

1

3�t

Z
�Vk;l

n
l
i�

@

@ri
��

s;(`+1)(r)d�V +
1

3�t

Z
Vk

�
@�

@ri

��
@�T

@rj

�
��

(`+1)
dV

+

Z
Vk

�
n
�a�

T
��

(`+1)
� �s�

T
�
�
(`+1=2)

� �
(`)
�o

dV = 0 : (37)
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All that is needed at this point is the definition of ��s;(`+1)(r); the scalar flux

corrections on the boundary of the element. In the modified four-step method of

Adam and Martin, one uses the partial current approach to define for the l-th face:
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�
n
l
i

3�t

@

@ri
��

s;(`+1)(r) =

(
�T

��
(`+1)

4
�

n
l
i

6�t

@�T

@ri
��

(`+1)

)

�

(
�T

��
inc;(`+1)

4
+

n
l
i

6�t

@�T

@ri
��

inc;(`+1)

)
: (38)

Here, ��inc;(l+1), is the corresponding column vector of nodal scalar flux correc-

tion values of the element that shares the l-th face of element k. This leads to a

nonsymmetric DFEM for the diffusion equation that is nonstandard and cannot be

solved efficiently with standard solvers. To simplify these equations, suppose we

assume the scalar flux corrections are continuous at the interelement boundaries

and set ��(`+1) = ��
inc;(`+1) = ��

(`+1)

cont
in Eq.(38), then Eq.(37) becomes:

�

NfacesX
l=1

1

3�t

Z
�Vk;l

n
l
i�
@�T

@ri

��
(`+1)

cont
d�V +

1

3�t

Z
Vk

�
@�

@ri

��
@�T

@rj

�
��

(`+1)

cont
dV

+

Z
Vk

�
n
�a�

T
��

(`+1)

cont
� �s�

T
�
�
(`+1=2)

� �
(`)
�o

dV = 0 : (39)

These equations represent the contribution from element k to the individual ver-

tices forming element k. A global CFEM matrix is formed for all vertices in the

mesh by summing the individual element contributions using the standard finite-

element technique4. This global matrix is a Nvertex x Nvertex symmetric positive-

definite matrix, where Nvertex is the number of vertices in the mesh. Marshak
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boundary conditions are used for all boundary vertices. If one uses the CFEM

differencing solely for the DSA equations, that is, assign the discontinuous scalar

flux correction to the continuous scalar flux correction, the resulting method is

stable but becomes ineffective for optically thick cells.

In the method of Wareing, Larsen and Adams, the CFEM differencing is used

in conjunction with a local mapping from continuous scalar flux corrections to

discontinuous scalar flux corrections. We use an adaptation of this method, where

this mapping is derived from the modified four-step method by assuming for the

l-th face that

�T
��

(`+1)

cont

2
=

(
�T

��
(`+1)

4
�

n
l
i

6�t

@�T

@ri

��
(`+1)

)

+

(
�T

��
inc;(`+1)

4
+

n
l
i

6�t

@�T

@ri
��

inc;(`+1)

)
: (40)

Note that Eq.(40) represents a discontinuous variation on the P1 identity, �=2 =

(J+ + J
�). Eq.(38) then becomes:

�
n
l
i

3�t

@

@ri

��
s;(`+1)(r) =

(
�T

��
(`+1)

2
�

n
l
i

3�t

@�T

@ri

��
(`+1)

)

�
�T

��
(`+1)

cont

2
: (41)
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Inserting Eq.(41) into Eq.(37), results in the following local set of equations (Pk

unknowns) for element k that are de-coupled from all other elements:

NfacesX
l=1

Z
�Vk;l

�

 
�T

��
(`+1)

2
�

�T
��

(`+1)

cont

2

!
d�V

�

NfacesX
l=1

1

3�t

Z
�Vk;l

n
l
i�
@�T

@ri
��

(`+1)
d�V +

1

3�t

Z
Vk

�
@�

@ri

��
@�T

@ri

�
��

(`+1)
dV

+

Z
Vk

�
n
�a�

T
��

(`+1)

cont
� �s�

T
�
�
(`+1=2)

� �
(`)
�o

dV = 0 : (42)

For elements with a constant Jacobian (such as tetrahedra),

1

3�t

Z
Vk

�
@�

@ri

��
@�T

@ri

�
��

(`+1)
dV

�

NfacesX
l=1

1

3�t

Z
�Vk;l

n
l
i�
@�T

@ri
��

(`+1)
d�V = 0 ; (43)

and Eq.(42) becomes

NfacesX
l=1

Z
�Vk;l

�

 
�T

��
(`+1)

2
�

�T
��

(`+1)

cont

2

!
d�V

+

Z
Vk

�
n
�
(`+1)
a �T

��
(`+1)

� �s�
T
�
�
(`+1=2)

� �
(`)
�o

dV = 0 : (44)

Although Eq.(43) does not hold for non-orthogonal hexahedral grids (element

with non-constant jacobians), we assume that it does. Therefore, given ��(`+1)
cont

, the
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CFEM scalar flux corrections, a reasonable approximation of ��(`+1), the DFEM

scalar flux corrections, can be easily obtained from Eq.(44).

We have performed a Fourier analysis for our DSA method on orthogonal

hexahedral meshes and have found that for cube meshes the spectral radius ap-

proaches a maximum of 0.83 for optically thick elements with a scattering ratio

equal to unity and zero for optically thick elements with scattering ratios less than

unity. As in the method of Wareing, Larsen and Adams, the performance of the

DSA method degrades as the aspect ratio of the elements become large. Later

in the paper we provide numerical results to demonstrate the effectiveness of the

DSA method on unstructured grids.

IV. Numerical Results

A. Mesh Anomalies

In this section we show, for two different hexahedral meshes, the number of

“rings” of mutual dependency, as discussed in the previous sections, as well as the

number of faces that are both incoming and exiting for a given angle. The first

mesh, as show in Figure (1), is generated from a cube of (20x20x20) orthogonal

hexahedral elements. The mesh elements are made non-orthogonal by perturb-
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ing the element widths using pseudo-random numbers. In particular, each vertex

(except the first and last) is given a perturbed coordinate as follows:

zp = zu + 0:15�xu(2Ra � 1) ;

where zp denotes the unperturbed element width, zu denotes the unperturbed co-

ordinate, �xudenotes the unperturbed element width, and Ra denotes a pseudo-

random number. The average element edge width is approximately the same as

that for the orthogonal mesh. This type of mesh is not a smooth mesh and not

representative of a “quality” hexahedral mesh.

The second mesh, as show in Figure (2), is a sphere comprised of non-orthogonal

elements and was generated using ICEM HexaTM , a commercial grid generator.

This mesh is smooth and is representative of a “quality” hexahedral mesh.

In Table I and II we provide for the smooth and non-smooth meshes, repec-

tively, the number of faces that are both incoming and exiting for a given angle

(and a percentage of the total face-angle combinations) for a given SN order as

well as the number of “rings” of mutual dependency. Here we see that both the

percentage of the faces that are both incoming and exiting for a given angle and

number of rings of mutual dependency is much larger for the non-smooth mesh

than that from the smooth mesh. We note that our algorithm for breaking the

“rings” of mutual dependency is not optimized, therefore, for problems with a
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large number of these rings, the total computational time can be significantly in-

creased.

B. Accuracy

1. Test Problem One

The first test problem is designed to compare the accuracy of the DFEMs on

unstructured tetrahedral meshes and hexahedral meshes. This test problem con-

sists of a 1-D homogeneous slab of isotropically-scattering material with a to-

tal length of 1 cm, a total cross section of 2 cm�1, a scattering ratio of 0.5, a

spatially-constant isotropic homogeneous source of 1 particle

cm3�s
, and vacuum bound-

aries. Obviously, no analytic solution exists for this problem, therefore, we use

a highly refined slab geometry S16 solution using Gauss-Legendre quadrature as

a reference solution. The problem is modeled in 3-D with reflecting boundaries

on each boundary perpendicular to the y and z axes. Tchebyschev-Legendre S16

quadrature is chosen so that the Legendre angular cosines correspond to the x

axis, therefore, the converged 3-D solution will equal that of the 1-D solution.

Calculations were performed on a sequence of four tetrahedral grids, four or-

thogonal hexahedral grids and four non-orthogonal hexahedral grids. The four
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tetrahedra meshes, as described in Table (III), are unstructured but similar in all

respects other than number and size of the tetrahedral elements. The four orthogo-

nal and non-orthogonal hexahedral mesh sequences use 5, 10, 20 and 40 elements

per side of a 1 cm single material cube. The non-orthogonal meshes begin with

the orthogonal mesh, but the widths are perturbed using pseudo-random numbers,

as discussed in the previous section.

The absolute value of the relative error in the total absorption rate as a function

of average element edge width is plotted in Figure (3) for the tetrahedral, orthogo-

nal hexahedral and non-orthogonal hexahedral grid solutions. All of the solutions

exhibit third-order accuracy, even for non-orthogonal hexahedral meshes which

contain several faces that are both incoming and exiting for a given angle. We

note that the non-orthogonal mesh with 20 elements per side is identical the the

mesh in the previous section which has a considerable number dependency rings

and faces that are both incoming and exiting for a given angle. We also note that

these anomalies had no effect on the iterative solution technigue.
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C. Acceleration

1. Test Problem Two

The second test problem is designed to show the effectiveness of the DSA

method with tetrahedral meshes and non-orthogonal hexahedral meshes with and

without degenerate elements. A degenerate element is formed when one or more

vertices have the same coordinates. The problem consists of a homogeneous

sphere with vacuum boundary conditions. We vary the total cross section and

the scattering ratio. The tetrahedral mesh consists of 607 tetrahedra with an aver-

age element edge width of 0.259 cm. The hexahedral mesh without degeneracies

consists of 648 hexahedra with an average element edge width of 0.317 cm. The

hexahedral mesh with degeneracies (some of the hexahedra have degenerated into

tetrahedra, wedges and pyramids) consists of 576 hexahedra.

The spectral radii for each mesh as a function of total cross section and scatter-

ing ratio is given in Tables (IV),(V) and (VI ) for the tetrahedral mesh, hexahedral

mesh without degeneracies and hexahedral mesh with degeneracies respectively.

The spectral radii for a small total cross section are small because of the large

amount of leakage.

Here we see that the DSA method is very effective under most conditions.
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For the tetrahedral mesh and hexahedral mesh without degeneracies, we see that

the spectral radii degrades as c ! 1 and as �t becomes large. Clearly this effect

is more pronounced for the hexadedral mesh with degeneracies. With increasing

amounts of absorption, this degradation in the spectral radii diminishes. These

results demonstrate that the DSA method should be very effective for most neu-

tronic problems provided the elements are not too skewed, but may be inadequate

for radiative transfer problems.

2. Test Problem Three

This problem is designed to show the efficiency of the DSA method on a het-

erogeneous test problem. The problem is a sphere with a diameter of 2.0 cm

containing a 1:0 cm x 1:0 cm x 1:0 cm cube in the center. The sphere has a to-

tal cross section in of 10 cm�1and the scattering ratio is unity. The total cross

section in the box, �t;box; is set to 0.01cm�1;1.0 cm�1 or 10.0 cm�1 and the scat-

tering ratio is 0.9. There is a homogeneous source of strength 1 particle

cm3
�s

inside the

box. The problem is solved on an unstructured tetrahedral mesh and a hexahedral

mesh without degeneracies. The tetrahedral mesh contains 1735 elements and is

shown if Figure (4). The hexahedral mesh contains 2016 elements and is shown

in Figure (5). The problem was solved with S4 level-symmetric quadrature with a
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convergence criterion of 10�4.

Tables (VII) and (VIII) give the SI and DSA CPU time and number of transport

iterations for the tetrahedral and hexahedral meshes, respectively. The absorption

rate percentage is given to verify that the two element mesh types are giving the

same answer. Here we see that the DSA method is very effective and efficient for

this problem. The DSA method is very efficient and only increases the time per

iteration by about 6 percent.

V. Conclusions

We have successfully developed and implimented discontinuous finite element

methods for the SN equations on 3-D unstructured tetrahedral and hexahedral

grids. We have discussed the difficulties involved in developing these methods

and acceptable techniques for dealing with them. We have demonstrated that the

DFEM’s are third order accurate for the scalar fluxes on both tetrahedral meshes

and on non-orthogonal hexahedral meshes even with the presense of faces that are

both incoming and exiting for a given angle. The source iterations have success-

fully been accelerated with a DSA method that is efficient and effective for most

types of problems, especially neutronics problems. We are presently investigating

other DSA techniques that are effective for all types of problems, especially ther-
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mal radiative transfer problems. Finally, we plan to optimize our algorithm for

breaking the “rings” of mutual dependency described in previous sections.
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Table I: Dependency Rings and Re-entrant Faces For Cube of Random Hexahedral
Elements

SN Order (angles) Re-entrant Faces (Percentage) Dependency Rings

2 (8) 0 (0.00) 0
4 (24) 4 (0.0002) 0
6 (48) 9,084 (0.30) 0
8 (80) 73,372 (1.45) 36

10 (120) 207,432 (2.70) 316
12 (168) 369,540 (3.44) 952
14 (224) 543,980 (3.79) 1,790
16 (288) 721,544 (3.91) 2,664
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Table II: Dependency Rings and Re-entrant Faces For Sphere of Hexahedral Ele-
ments

SN Order (angles) Re-entrant Faces (Percentage) Dependency Rings

2 (8) 928 (0.22) 0
4 (24) 3,884 (0.30) 0
6 (48) 4,492 (0.18) 0
8 (80) 9,970 (0.23) 0

10 (120) 11,458 (0.18) 0
12 (168) 19,080 (0.21) 0
14 (224) 24,192 (0.20) 0
16 (288) 29,282 (0.19) 4
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Table III: Tetrahedral Mesh Description for Test Problem Two.

Mesh ID Tetrahedra Average Cell Edge Width (mfp)

1 192 0.7070
2 1536 0.3536
3 12228 0.1770
4 98304 0.0884
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Table IV: Spectral Radius for Test Problem Two Using Tetrahedral Mesh.

�t c = 1:00 c = 0:99 c = 0:90

0.1 0.03 0.03 0.03
1.0 0.17 0.17 0.15
10.0 0.58 0.57 0.49
100.0 0.90 0.87 0.61
1000.0 0.95 0.71 0.25
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Table V: Spectral Radius for Test Problem Two Using Hexahedral Mesh Without
Degenerate Elements.

�t c = 1:00 c = 0:99 c = 0:90

0.1 0.03 0.03 0.03
1.0 0.17 0.17 0.15
10.0 0.36 0.36 0.32
100.0 0.68 0.64 0.54
1000.0 0.86 0.72 0.35
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Table VI: Spectral Radius for Test Problem Two Using Hexahedral Mesh With
Degenerate Elements.

�t c = 1:00 c = 0:99 c = 0:90

0.1 0.05 0.05 0.05
1.0 0.27 0.27 0.23
10.0 0.75 0.74 0.63
100.0 1.00 0.99 0.87
1000.0 1.00 0.99 0.71
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Table VII: Tetrahedral Mesh CPU time and Iteration Counts for Test Problem
Three.

SI DSA
�t;box CPU Time Iters CPU Time Iters Abs. Rate (%)

0.1 573.8 157 57.9 15 1.276
1.0 558.0 153 45.8 12 11.78

10.0 496.7 136 35.0 9 62.10

39



Table VIII: Hexahedral Mesh CPU time and Iteration Counts for Test Problem
Three.

SI DSA
�t;box CPU Time Iters CPU Time Iters Abs. Rate (%)

0.1 1863.8 157 118.1 9 1.277
1.0 1822.5 153 105.0 8 11.79

10.0 1619.3 137 79.7 6 62.17
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Figure 1: Wareing, McGhee, Morel and Pautz, “Cube of “Random” Non-
Orthongonal Hexadedral Elements.”
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Figure 2: Wareing, McGhee, Morel and Pautz, “Sphere of Non-Orthongonal Hex-
adedral Elements.”
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Figure 3: Wareing, McGhee, Morel and Pautz, “Absolute Error in Absorption
Rate for Test Problem One.”
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Figure 4: Wareing, McGhee, Morel and Pautz, “Tetrahedral Mesh For Test Prob-
lem Three.”
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Figure 5: “Hexahedral Mesh For Test Problem Three.”
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